Harmonic Measure, L 2 Estimates and the Schwarzian Derivative

نویسندگان

  • PETER W. JONES
  • E W. JONES
چکیده

Abstrac t . We consider several results, each o f which uses some type o f " L 2' ' es t imate to provide information about harmonic measure on planar domains. The first gives an a.e. characterization of tangent points o f a curve in terms of a certain geometric square function. Our next result is an LP est imate relating the derivative of a conformal mapping to its Schwarzian derivative. One consequence of this is an est imate on harmonic measure ~eneralizing Lavrent iev 's est imate for rectifiable domains. Finally, we consider L z es t imates for Schwarzian derivatives and the quest ion of when a Riemann mapping ~ has log ~ in BMO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions

For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$,  we definea  subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In  the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative  $mathrm{T}...

متن کامل

The Schwarzian Derivative for Harmonic Mappings

The Schwarzian derivative of an analytic function is a basic tool in complex analysis. It appeared as early as 1873, when H. A. Schwarz sought to generalize the Schwarz-Christoffel formula to conformal mappings of polygons bounded by circular arcs. More recently, Nehari [5, 6, 7] and others have developed important criteria for global univalence in terms of the Schwarzian derivative, exploiting...

متن کامل

Schwarzian Derivatives and Uniform Local Univalence

Quantitative estimates are obtained for the (finite) valence of functions analytic in the unit disk with Schwarzian derivative that is bounded or of slow growth. A harmonic mapping is shown to be uniformly locally univalent with respect to the hyperbolic metric if and only if it has finite Schwarzian norm, thus generalizing a result of B. Schwarz for analytic functions. A numerical bound is obt...

متن کامل

The norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$

‎In the present investigation‎, ‎we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $‎, ‎where‎ ‎$Vert T_{f} Vert= sup_{|z|

متن کامل

ar X iv : h ep - t h / 99 07 19 3 v 1 2 7 Ju l 1 99 9 An Application of the Schwarzian Derivative ∗

In this note we present an application of the Schwarzian derivative. By exploiting some properties of the Schwarzian derivative, we solve the equation appearing in the gravity-dilaton-antisymmetric tensor system. We also mention that this method can also be used to solve some other equations. The Schwarzian derivative appears naturally in the transformation law of the two-dimensional stress-ene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994